
1

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences 2019 book.bfh.ch

Neural Networks on a FPGA

Degree programme: BSc in Computer Science | Specialisation: IT-Security
Thesis advisor: Prof. Dr. Bernhard Anrig, Prof. Andreas Habegger
Expert: Dr. Federico Flueckiger

In today’s world, neural networks are ubiquitous. They are used from voice
recognition to driving autonomous vehicles. One of their main drawbacks
is that they are very computationally expensive, which limits their practi-
cality in mobile and embedded applications. In this work, we explore one
approach to mitigate this flaw: Running a quantized neural network on a
FPGA.

Introduction
A field-programmable gate array (FPGA) is an integrat-
ed circuit (IC) that can be programmed to represent
any digital circuit, as long as the design does not ex-
ceed the resources of the specific device. The descrip-
tion of such a circuit is done in a hardware description
language (HDL). To do this for something as complex
as a neural network, a top down approach was cho-
sen. We first evaluated a reasonable neural network
architecture using Python, then implemented it in
plain C and finally ported the inference part of the
network to the FPGA using Verilog.

Evaluation of the Network Architecture
To find a reasonable network architecture to imple-
ment, we tested convolutional neural networks (CNN)
and fully-connected neural networks of various sizes.
The networks were trained and evaluated using the
MNIST dataset, which consists of 70’000 handwritten
digits (0 to 9). As a result, a fully-connected network
architecture with 2 hidden layers (64 nodes per layer)
was chosen. We chose a fully-connected network
since it offered reasonable accuracy (around 94%)
while being easier to implement than a CNN.

CPU Implementation
We then implemented this architecture in plain C
 using only POSIX libraries. To train the network we
mostly used floating point values, since this is re-
quired for stochastic gradient descent to work. The
 inference part of the network was implemented twice.
The first implementation used regular float values
while the second used only integer values. For this
quantized inference to work, we designed a conver-
sion function to transform the learned parameters of
the neural network (weights and biases) into integers
of various sizes (8 – 32 bits). This has two advantages:
We save space when storing the parameters of the
network (e.g. the weights use 4 times less storage)
and it reduces the computational requirements of in-
ference, since an integer multiplication is much sim-
pler than a floating point one. Most importantly, quan-
tized inference is in our case only slightly less
accurate than normal inference (less than 0.1%).

FPGA Implementation
After testing and verifying the quantized inference, we
implemented it on the FPGA. We started by designing
a block diagram, writing the corresponding Verilog
code, simulating and testing the design in the Vivado
Simulator. To get the parameters of the trained net-
work into the design, we used a helper function in the
C code, which exported them in a format usable on the
FPGA. The inference part was then packed as an IP
core and wrapped into a bigger design containing
components like a DMA Controller and various AXI In-
terfaces. These parts are needed, to actually run the
inference on our target hardware platform, the Digi-
lent Arty Z7-20. This enabled us to read the image
data from the DDR memory of the Arty and stream it
into our inference core. We created a custom Linux
distribution that uses a special device driver to make
our DMA controller accessible as a device file. Finally
we were able to write an application that interfaces
with this device, reads the MNIST data from a file on
the SD card and writes it into the DDR memory. The
data is then streamed into our inference core.

Pascal Daniel Liniger

The Arty Z7-20 development board.

