
book.b� .ch

 Ramon Boss

 Anna Doukmak

 Experiments in Formal Veri� cation of Scala Code

 Degree programme : BSc in Computer Science | Specialisation : IT Security
Thesis advisor : Prof. Dr. Kai Brünnler
Expert : Urs Keller (Revault Sàrl)

 Correctness of Bitcoin So� ware is important, because bugs can lead to loss
of funds. Contrary to testing, formal veri� cation can ensure correctness,
at least in principle. In this thesis we set out to formally verify a part of
Bitcoin-S, a Scala implementation of the Bitcoin protocol. We use the Stain-
less veri� er, developed by the LARA group of EPF Lausanne.

Formal Veri� cation
Formal veri� cation is a method to check the correct-
ness of a program based on a formal speci� cation.
Using a veri� cation tool, all possible inputs can be
covered, in contrast to unit testing, where the inputs
must be speci� ed separately.

The Stainless Veri� cation Tool
We use Stainless as our veri� cation framework, which
– takes Scala code with speci� cation as input, but

does not support all Scala language features,

– reports inputs for which a program violates the
speci� cation or

– con� rms the correctness of a program.

The First Property
The � rst property of Bitcoin-S we set out to verify we
call the no-in� ation-property:
– a regular transaction (non-coinbase) cannot gener-

ate new coins

The code uses Scala language features that Stainless
does not support, so we have to transform it into the
supported Scala subset.
We found that the code is too large to make this feasi-
ble in the available time.

However, during this work we found a bug in the
function checking the correctness of a transaction.
Its implementation did not allow transactions that
referenced two or more outputs of the same previ-
ous transaction. We � xed it and made a pull request
which has been merged by the developers of the
Bitcoin-S project.

The Second Property
So, we turn our analysis and veri� cation to another
property:
– adding zero coins to a number of coins results in

the same number of coins

Here we were successful in transforming the relevant
code into the supported subset of Scala and verifying
it.

Conclusion
Because of the limitations of the veri� cation tool, we
could only verify a rewritten version of the original
code. So code should be written speci� cally with
formal veri� cation in mind, in order to successfully
verify it. Also, we found that trying to verify code
reveals bugs. Finally, our work led to some feedback
to the Stainless developers to improve the tool.

 Stainless speci� cation of the Second Property Our Bug� x

