
Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences - Book 2021

 Julien Farine

 Searching similar functions using the LLVM
intermediate representation
 Degree programme : Master of Science in Engineering | Specialisation : Information and Communications Technologies
Thesis advisor : Prof. Dr. Endre Bangerter
Expert : Jonas Wagner (Threatray)

 The search for similarities in binary codes is an evolving area of active
research, with multiple application areas ranging from vulnerability
search to malware classi� cation. In this project we propose a scalable
solution using similarity preserving-hashes and LLVM intermediate repre-
sentation to search for similar functions in a large amount of compiled
programs.

Need of similarity search
A new vulnerability has been found in a function
of a popular open source cryptographic library. An
attacker is now able to exploit programs using the
library in order to execute malicious code. Is there a
vulnerable program on your system? Answering this
question is crucial for the security of your system,
but the investigation is not trivial. Indeed, you do not
have access to the source code of all the programs
installed on the system, moreover the developers of
closed source so� ware programs do not necessarily
publish the list of libraries they use. The only informa-
tion accessible is the binaries of installed programs
and the vulnerable cryptographic library. In such a
scenario, answering to the initial question becomes
complex. To overcome such issues, we propose a
system able to search for similar functions in a large
set of binary programs, allowing to retrieve binaries
containing a given function.

Binary codes similarity challenges
One of the major challenges when searching for simi-
lar functions between binaries is to be able to handle
the e� ects of compilers on source code. Indeed, the
same program, compiled with di� erent compilers,
di� erent versions of compilers or di� erent levels
of optimisation, produces widely di� erent binary
representations. Thus, an exact match between com-
piled codes will fail to retrieve di� erent binary code
representations for the same source code, and a more
advanced similar search system is therefore needed.

Using the LLVM intermediate representation
Rather than designing our similarity search frame-
work to work directly with binary programs, we
� rst li� ed the binaries into the LLVM intermediate
representation (IR). The LLVM IR is a low-level
language using a reduced instruction set especially
built to support high-level analysis and transforma-
tions. Hence, it makes the LLVM IR a valuable tool for
function similarity search. The smaller instruction set,

compared to the assembly one, gives less possibilities
to represent the same operations, which increases
similarities between codes. In addition it is easier to
extract information from the LLVM IR than from the
assembly, and the LLVM tools are well documented
and provide access to compiler optimisation passes,
which can be useful for reducing the compilers
e� ects.

Feature extraction and performances
Once the binaries have been li� ed, we extract several
features from functions, all in the form of a MD5 hash.
Then, features are added together to create similar-
ity-preserving hashes using the SimHash algorithm.
Thus, we can measure similarity between functions
by computing the Hamming distance between their
SimHashes (the hamming distance is the number of
di� erent bits between two hashes). This allows our
system to scale given searches in hamming space can
be done e� ciently on large amount of data.
The SimHash method we use is inspired by an open
source project of Thomas Dulien called „Searching
statically-linked vulnerable library functions in
executable code“, which is interesting, as T. Dulien
does not use the LLVM IR, it allows us to compare our
results and highlight the e� ect of the LLVM intermedi-
ate representation.
With the same set of features as T. Dulien, on the
same data, for an irrelevant result rate of 5%, the
LLVM IR presents an improvement of true positive
rate from 41% in the Dulien‘s work to 55% in our.
This means that the LLVM IR actually increases the
similarities.
Moreover we also tested our system in a malware
classi� cation use case by searching similar functions
in already classi� ed malwares. The system was able
to correctly classify over 95% of the tested samples.

