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 E� ective trading strategies usually need a deep understanding of � nance 
and market dynamics. We try to circumvent this problem by creating a 
Reinforcement Learning agent which should learn a policy to maximize the 
value of a single stock portfolio. Both Q-Learning and Deep Q-Learning are 
used to estimate this policy. 

Introduction
Traditionally, supervised learning methods were used 
for machine learning agents in trading. This approach 
has two weaknesses. First, most supervised learning 
methods used for trading have an information bottle-
neck between input data and trading action, because 
of a two-staged procedure: A prediction is made 
which then results in a trading action based on this 
prediction. In this case there will be no optimization 
of a model which maximizes the pro� t but only the 
prediction model. 
A second problem with supervised learning methods 
is their inability to model transaction costs. Rein-
forcement learning solves both problems: The agent 
tries to learn a policy which directly maximizes the 
pro� t and transaction costs can easily be modelled 
within the environment. Therefore, the goal of our 
thesis is to implement a Reinforcement Learning 
framework with an agent which tries to optimize a 
single stock portfolio. It is not our goal to connect our 
framework to a real stock exchange. 
RL Basics
The goal in Reinforcement Learning is to learn a 
policy which maps states to actions and maximizes 
a prede� ned reward function. The procedure runs 
as follows: In a period of a � nite or in� nite number 
of timesteps, for each timestep, the current facts 
are mapped to a state which covers the information 
to learn the policy (stock prices, money held, etc.). 
Based on this policy, the agent generates an action 
(for example buy n shares of stock s). Then, the agent 
is rewarded based on the action taken, which will be 
used to improve the policy. 
Trading-Agent
We designed a modular trading framework so that the 
following components can be easily exchanged: state 
generator (part of the environment which creates the 
state), reward generator (part of the environment 
which creates the reward), agent (creates actions and 
learns a policy) and model (neural network which 

represents the policy function). For each of these 
components, di� erent combinations are implemented.
We designed a Q-Learning and a Deep-Q-Learning 
agent to learn the policy function. In Q- and Deep-
Q-Learning, the agent learns a function which maps 
states to so-called Q-values. Those values represent 
how good an action in a particular state is expected 
to be. In Q-Learning, the policy function is repre-
sented by a table, whereas in Deep-Q-Learning a 
neural network is used. 
Some of our improvements seem to be novel concepts 
when compared to the literature. First, we introduce a 
new paradigm for the reward function. Traditionally, 
the reward function rewards only actions the agent 
has executed. However, there are situations when this 
classic reward paradigm confuses the agent. Sup-
pose an agent wants to buy stock but has no money 
to do so. If the price went up the agent would have 
intended a hypothetically pro� table action. Because 
no action has been executed in the classic reward 
paradigm, this intention would not be rewarded. We 
introduce a new reward paradigm where the agent 
will be rewarded not only for its actions but also for 
its intentions. 
A second improvement we could not � nd in the litera-
ture concerns the update of the Q-function. Tradition-
ally, the update will only be performed for the exe-
cuted action, while all other values stay the same. We 
propose an update procedure where the environment 
computes the reward for all other possible actions 
and the agent updates its policy with rewards for all 
these actions. This update procedure will eliminate 
the necessity of exploration and uses less iterations 
to learn the optimal policy.
Conclusion
We tested di� erent combinations of agents, reward 
generators and models in the context of Reinforce-
ment Learning for trading. It seems promising that 
with an improved con� guration, our agents could 
indeed execute a successful long-term trading 
strategy.


