
Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences - Book 2022

 Remo Hanspeter Hofmann

 Lukas Zoller

 Reinforcement Learning for Trading

 Degree programme : BSc in Computer Science
Thesis advisor : Prof. Dr. Erich Baur
Expert : Andreas Fischer (VBS)

 E� ective trading strategies usually need a deep understanding of � nance
and market dynamics. We try to circumvent this problem by creating a
Reinforcement Learning agent which should learn a policy to maximize the
value of a single stock portfolio. Both Q-Learning and Deep Q-Learning are
used to estimate this policy.

Introduction
Traditionally, supervised learning methods were used
for machine learning agents in trading. This approach
has two weaknesses. First, most supervised learning
methods used for trading have an information bottle-
neck between input data and trading action, because
of a two-staged procedure: A prediction is made
which then results in a trading action based on this
prediction. In this case there will be no optimization
of a model which maximizes the pro� t but only the
prediction model.
A second problem with supervised learning methods
is their inability to model transaction costs. Rein-
forcement learning solves both problems: The agent
tries to learn a policy which directly maximizes the
pro� t and transaction costs can easily be modelled
within the environment. Therefore, the goal of our
thesis is to implement a Reinforcement Learning
framework with an agent which tries to optimize a
single stock portfolio. It is not our goal to connect our
framework to a real stock exchange.
RL Basics
The goal in Reinforcement Learning is to learn a
policy which maps states to actions and maximizes
a prede� ned reward function. The procedure runs
as follows: In a period of a � nite or in� nite number
of timesteps, for each timestep, the current facts
are mapped to a state which covers the information
to learn the policy (stock prices, money held, etc.).
Based on this policy, the agent generates an action
(for example buy n shares of stock s). Then, the agent
is rewarded based on the action taken, which will be
used to improve the policy.
Trading-Agent
We designed a modular trading framework so that the
following components can be easily exchanged: state
generator (part of the environment which creates the
state), reward generator (part of the environment
which creates the reward), agent (creates actions and
learns a policy) and model (neural network which

represents the policy function). For each of these
components, di� erent combinations are implemented.
We designed a Q-Learning and a Deep-Q-Learning
agent to learn the policy function. In Q- and Deep-
Q-Learning, the agent learns a function which maps
states to so-called Q-values. Those values represent
how good an action in a particular state is expected
to be. In Q-Learning, the policy function is repre-
sented by a table, whereas in Deep-Q-Learning a
neural network is used.
Some of our improvements seem to be novel concepts
when compared to the literature. First, we introduce a
new paradigm for the reward function. Traditionally,
the reward function rewards only actions the agent
has executed. However, there are situations when this
classic reward paradigm confuses the agent. Sup-
pose an agent wants to buy stock but has no money
to do so. If the price went up the agent would have
intended a hypothetically pro� table action. Because
no action has been executed in the classic reward
paradigm, this intention would not be rewarded. We
introduce a new reward paradigm where the agent
will be rewarded not only for its actions but also for
its intentions.
A second improvement we could not � nd in the litera-
ture concerns the update of the Q-function. Tradition-
ally, the update will only be performed for the exe-
cuted action, while all other values stay the same. We
propose an update procedure where the environment
computes the reward for all other possible actions
and the agent updates its policy with rewards for all
these actions. This update procedure will eliminate
the necessity of exploration and uses less iterations
to learn the optimal policy.
Conclusion
We tested di� erent combinations of agents, reward
generators and models in the context of Reinforce-
ment Learning for trading. It seems promising that
with an improved con� guration, our agents could
indeed execute a successful long-term trading
strategy.

