
Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences - Book 2022

 Marc Fabien A� olter

marc.fabien.a� olter@gmail.
com

 Particle System in OpenGL

 Degree programme : BSc in Computer Science | Specialisation : Computer Perception and Virtual Reality
Thesis advisor : Prof. Marcus Hudritsch
Expert : Dr. Harald Studer (Optimo Medical AG)

 Particle systems are tools to make scenes livelier without being expensive
in terms of resources. They are a collection of particles that move in the
world and change their size, color, transparency, and direction. This com-
puter graphics technique can create various visual e� ects ranging from
� re, smoke, and water to the sun.

Introduction
This bachelor thesis is the continuity of my project
two, called „low-level particle systems“ I have imple-
mented a basic particle system in OpenGL working
only on GPU. Particle systems already exist in many
computer graphics tools, but they are all di� erent. In
my case, I have developed my own because I want
to be independent of other solutions. I want to use
as few resources as possible and be deployable to a
maximum of platforms.
Goals
For this project, I had three main goals :

– Integrate my particle system in SLProject (A frame-
work of the BFH).

– Create a user interface.

– Add features, such as size over life, gravity, etc.

The last goal was the one that took more time
because there, the amount of work possible is enor-
mous, and man can always � nd a new idea, a new
feature for a particle system.
Implementation
The idea behind the functioning of a particle system
is the following. There are two elements, a particle
emitter and particles. The particles are spawned from
the particle emitter and live for a speci� c time. There-
fore, they are born and will live until they die. When
the particles pass, they will be recycled and thus be
emitted again from the particle emitter. The appli-
cation draws the particles in each frame, but before
it paints, it needs to update them. The CPU can do
this task, but in my case, because I want to use fewer
resources, the application updates them on GPU.
To update them on GPU, I use a transform feedback
technique that allows me to write back information on
a bu� er to bypass the call between the CPU and GPU.
The behavior of particles changes according to the
features enabled. They can change the updating and

the drawing or how the system generates the particle.
These features are, for example, size over life, alpha
over life, acceleration, gravity, etc. The more features,
the more visual e� ects. In this project, I implemented
many features, including the core ones. Because I
want the particle system to use as few resources as
possible, the shaders and the data running on the
GPU are generated dynamically according to the
currently enabled features, which saves memory and
computation cost.

Conclusion
I managed to recreate physics e� ects such as � re,
smoke, dust storm, and even the sun with my particle
system. I ful� lled the objective of this project, but as
said before, the features that one can add are tremen-
dous. Some novelties are developed, like the Unreal
Engine 5, which pushes for innovation. Therefore,
this particle system can always be continued and
enhanced.

 Sun created with my particle system in SLProject

