
Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences - Book 2022

 Stefan Lüthi

bern-rtos@luethi.tech

 Bern RTOS - A real-time operating system for
microcontrollers written in Rust
 Degree programme : Master of Science in Engineering | Specialisation : Industrial Technologies
Thesis advisor : Prof. Roger Weber
Expert : Daniel Kühni (Inetronic AG)

 Microcontroller performance and connectivity is ever increasing and so is
the complexity of embedded systems. A larger code base naturally leads to
more so� ware defects that can cause a fault or can be exploited. As oppo-
sed to C/C++ the Rust programming language is memory-safe, eliminating
most common run-time bugs by design. Based on Rusts safety principles
a fail-safe real-time operating system (RTOS) has been developed in this
thesis.

Embedded Rust ecosystem
Rust is a programming language with memory-safety
and thread-safety guaranteed at compile time. By
mitigating so� ware defects from runtime to compile
time Rust might challenge to role of C/C++ on micro-
controller based embedded systems. Especially as the
complexity of microcontroller applications increases.
The embedded Rust ecosystems already provides
community driven hardware abstraction layers (HAL)
and a real-time framework (RTIC). However, missing
is an RTOS which is fail-safe, can be easily integrated
in a project and provides an intuitive application
programming interface (API).

A new RTOS from the ground up
In previous projects the requirements for the kernel
were de� ned based on the analysis of existing RTOS
written in Rust or C. The core components of the ker-
nel i.e. scheduler and synchronization primitives were
then implemented and tested on a microcontroller.
This thesis introduced the concept of threads and
processes to microcontrollers. Processes run in isola-
tion from each other preventing so� ware faults from
spreading across the entire system. Process memory
and stack boundaries are enforced in hardware. A vio-
lation of these boundaries results in immediate ter-
mination of the thread. The kernel handles message
passing between threads in di� erent processes. In
addition, usability was increased signi� cantly by
adding message queues, memory allocation, system
logs and event tracing.

Espresso machine example application
In the second part of the thesis Bern RTOS was put
to the test on a real-world use case: an espresso
machine. The goal was to implement an integration
test of many kernel components and to evaluate the
API usability.
First, the machine was upgraded with custom made
electronics including a touch screen and additional
sensors to measure water pressure, � ow and temper-

atures at multiple points. The application emulates
a typical RTOS use case where many loosely coupled
tasks are executed on the same microcontroller. There
is a real-time critical aspect with the temperature
control and actuators which must run in a determin-
istic manner. A high background load is caused from
updating the graphical user interface with live sensor
measurements. A dynamic and unknown system load
was created by a TCP/IP connection which interacts
with a computer storing machine state and measure-
ments in a database.

Outlook towards an open source RTOS
The espresso machine application demonstrates
that Bern RTOS provides the fundamental features
to develop a real-time application. It also shows
that Rust can be used e� ectively for microcontroller
applications. The text size of the complete example
application is with 286 kB (7 kB Bern RTOS, 219 kB
GUI) comparable to an implementation in C/C++ . Yet,
guaranteeing memory-safety and thread-safety at
compile time. The run-time costs for Bern RTOS are
low. In case of the espresso machine the kernel uses
2% of the total CPU execution time.
The Bern RTOS code base is open-source (MIT
license) and further development continues as a com-
munity project. bern-rtos.org

 Modi� ed espresso machine used in the example application.

