
1

Virtualization based physical memory tracing
Subject: IT Security

Thesis advisor: Dr. Endre Bangerter

Expert: Reto Inversini (MELANI)

Memory tracing is a novel technique for capturing memory changes of
an unknown running program or a whole system over time. The solution
we present here works using hardware virtualization, thus capturing
changes in the entire physical memory. The visualization of the captured
data (after some processing) allows us to understand some key aspects
of an unknown software in little time. Gaining this knowledge quickly
is important to efficiently fight malicious software (e.g. viruses, rootkits,
bootkits, etc.).

In 2012, we presented a new technology to analyze
(malicious) software. Back then, the system collected
runtime information of an arbitrary Windows XP pro­
cess. The collected data consisted of various process
memory, their changes over time and a list of exe­
cuted system functions. To overcome the huge amount
of data generated by the system, we developed a few
preprocessing scripts to calculate meta data. The final
step then was to visualize the recorded data with its
meta data resulting in an innovative system to reverse
engineer software. Our system proved to be an in­
valuable tool for analyzing and understanding mali­
cious software. However, there were some drawbacks
with this system. Especially portability difficulties
and the lack of the system memory. We needed a new,
more generic system, that captures all memory
 changes in the whole physical memory of any modern
operating system.

The new solution consists mainly of a recorder and
a viewer. The recorder is implemented in C as a Linux
kernel module which links itself at runtime to the
 Kernel Virtual Machine (KVM). That means, whatever
KVM is able to run, the recorder is able to record – e.g.
a program, a system driver or a whole system boot on
any version of Windows, Linux or Mac. The hardware

virtualization of KVM also gives us great advantages
such as stealthiness, security and a high recording
performance. In the current implementation the ana­
lyst can specify at what frequency a snapshot should
be made, that is, enumerating all memory changes
and writing them to the hard disk.

The viewer component is implemented in C++ with
help of the frameworks boost and Qt. It visualizes the
raw data along with some preprocessed meta infor­
mation. There is also a basic tool­set included to ex­
plore, view, export, blacklist, whitelist or diff memory
sections. The additional capturing of the system
 memory, compared to its predecessor, gives us the
ability to get information about the state of the oper­
ating system at the time a snapshot was made, e.g
the running processes, open files and network con­
nections. We import such information with help of
the Volayility memory forensic tool to annotate the
visualization further.

Currently, we focus only on the reverse engineering
aspect, but there are a lot of other applications
memory tracing can offer. Another use case would
be memory integrity checks on running systems
to prove the correctness of a system.

Dominic Fischer

Visualized memory trace of a banking trojan in Windows XP

BU
VA

BI
BE

