
Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences - Book 2023

Yanik Bigler

yanik.bigler@gmail.com

NC Language Server for VS-Code

Degree programme : BSc in Computer Science | Specialisation : Digital Business Systems
Thesis advisor : Prof. Dr. Kai Brünnler
Expert : Jean-Marie Leclerc

With the availability of integrated development environments such as
Eclipse, Visual Studio or Intellij, supporting features such as syntax highl-
ighting, syntax checking and auto completion have become an integral
part of everyday programming. Unfortunately, these features are still not
available for some languages, such as the G-code based NC language from
Siemens, which is used to control the axes of CNC machines. With this
thesis, I wanted to change that.

Introduction
A numerical control (NC) language server is an
extension that provides development support for the
Sinumerik NC programming language. This language
includes features such as loops, other control struc-
tures and macros familiar from the C programming
language. In addition, there are many other control-
ler-specific extensions such as synchronous actions
and transformations that make the language compara-
tively flexible, powerful, but also complicated. In this
thesis, the Lance extension was developed to be used
with Microsoft‘s Visual Studio Code text editor, with
the goal of improving the development experience of
NC developers.
Extension
The language appliance for numerical control code
(Lance) implements the language server protocol
(LSP), an open standard developed by Microsoft, that
makes it mostly editor independent. The code and
other user interactions in the editor are sent to the
server via the protocol. The code is then processed by
a specially built parser, generated by ANTLR, a lead-
ing parser generation tool. ANTLR allows the grammar
of the language to be written in a syntax similar to the
extended Backus-Naur form (EBNF). The grammar was
written primarily by consulting the various manuals
available for the language. Depending on the requests
sent by the editor, the parse tree is then visited by
various purpose dependent visitors to read out the
information necessary to answer it.

Development
The previously prioritized requirements were imple-
mented and released in regular increments to get
immediate feedback from users on what they liked
and what should be changed. In a first release, a
hover feature was added to syntax highlighting. When
hovering over a symbol, the definition of that symbol
is displayed in a small popup. In a second release, a
goto definition feature has been added which allows
to jump to the definition of a symbol even across files.
Also, syntax highlighting was improved to visually dis-
tinguish between different types of symbols, and the
hover feature was extended to display more informa-
tion about the symbol, as requested by user feedback.
The third release added some diagnostics that high-
light problems in the code, such as missing variable
declarations and syntax errors. A command-line
interface was added to allow this functionality to be
used in a continuous integration system by generating
a report of all problems found. Finally, there was a
patch to fix and improve some of the recently released
features based on user feedback.
Outlook
Because I have deliberately focused on many dif-
ferent features, there is now a lot of room for rapid
improvement. There are many ideas on how to further
improve the support for NC developers that I would
like to look into in the future and continue to develop
on a regular basis.

NC-File opened in the manufacturer provided editor. NC-File opened in VS-Code with the Lance extension.

