
Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences - Book 2023

Elia Martin Bieri

info@eliabieri.dev

WG Display Extended: Safe, Portable and Polyglot
Plugin System for Rust Applications
Degree programme : BSc in Computer Science | Specialisation : Distributed Systems and IoT
Thesis advisor : Pascal Mainini
Expert : Prof. Dr.Torsten Braun (University of Bern)

The WG Display application is an extensible information display software
written in Rust. This thesis addresses several limitations of the current
implementation. A novel plugin system, utilizing WebAssembly, was
developed. This system allows plugins to be developed in a variety of
programming languages. To distribute these plugins, a simple Continuous-
Integration based plugin registry was developed and implemented.

The WG Display application is an extensible open-
source information display software written in the
Rust programming language. The application is
deployed to a Raspberry Pi where it presents various
pieces of information, known as widgets, on an
attached screen. The current approach of compiling
widgets into the main application binary imposes
significant limitations. Updating individual widgets
requires updating the entire application, leading
to scalability issues. Each widget, that is added,
increases the size of the application. Additionally,
the widget development process is restricted to the
Rust programming language, limiting the audience
of potential contributors. Finally, the existing setup
allows widgets unrestricted access to the host sys-
tem, posing a potential security risk.

To overcome these limitations, a novel plugin system,
leveraging WebAssembly, was implemented. WebAs-
sembly is a fast, portable, and secure binary instruc-
tion format widely supported by major browsers and
standalone runtimes beyond the browser context. By
utilizing the WebAssembly Component Model, cur-
rently under development and stabilization, widgets
can now be implemented in multiple programming
languages. The widget interface is defined in a
language-agnostic manner using the WebAssembly
Interface Types (WIT) format. The resulting plugin
system ensures safety, portability, and compatibility
with various programming languages.

Additionally, this thesis presents a simple Continuous
Integration (CI)-based plugin registry that automates
the build and publication process for plugins.

The web dashboard of the WG Display application. It allows
the user to install and manage plugins, called widgets.

