
Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences - Book 2024

Amar Tabakovic
078 784 89 87
tabakovicamar1@gmail.com

Implementation of a Real-time Streaming-based
Terrain Level of Detail System
Degree programme : BSc in Computer Science
Thesis advisor : Prof. Marcus Hudritsch
Expert : Dr. Eric Dubuis

Rendering large landscapes is not only interesting from a visual standpo-
int, but also from a technical one. How do large landscapes get rendered
efficiently with high frame rates? How does the underlying data get
managed effectively without overloading the available memory? How does
something like Google Earth work under the hood? In this thesis, a large-
scale terrain renderer was developed that can render the entire Earth.

Introduction
Large-scale terrain rendering is an important task for
various practical applications of computer graphics,
such as video games, simulation systems and geo-
graphic information systems (GIS). It is also a difficult
task due to the sheer size and the constant visibility
of terrains, making the naive approach of rendering
every point of the terrain impractical. For this reason,
there exist several Level of Detail (LOD) algorithms,
which remove detail from the terrain the further away
it is from the camera. Besides the efficient rendering,
the handling of terrain data is also a central aspect.
Massive terrain datasets, such as the Earth, span
multiple terabytes and cannot fit into the memory
of today‘s personal computers. The terrain renderer
must therefore support streaming, the concept of
loading and offloading terrain data dependent on the
camera movement.

Implementation
Technologies and Data
The system was implemented with C++17 and OpenGL
4. Numerous smaller helper libraries were used,
such as Dear ImGui, GLM, STBI, libcurl, libwebp, and
more, but the bulk of the system was written from the
ground up. The terrain data, which includes satellite
imagery for texturing and heightmaps, is served by
web APIs from Maptiler. The data is served with the
XYZ tiling scheme, which organizes the data in a hier-
archical manner, and is available up to level 14.

Rendering
The LOD algorithm is based on Chunked LOD, which
organizes the terrain into a quadtree, a tree where
each node has four children. The actual rendering
is done with heightmap-displacement in the vertex
shader, which requires only a constant set of vertex
and index buffers to be defined globally and allows
the usage of the same mesh for every quadtree node.
The vertex shader also perfroms the geo-projection
to the WGS84-ellipsoid, giving the terrain its familiar

elilpsoidal shape. Cracks between adjacent terrain
meshes with different LOD levels are hidden by ren-
dering a skirt around the mesh. View-frustum culling
and horizon culling prevent loading and rendering
areas which lie outside of the viewing area and
beyond the horizon respectively.

Streaming and Caching
Streaming in terrain data involves reading data from
the disk or fetching data from the web API, which
introduces latency and results in hiccups. To circum-
vent this, a multithreaded architecture based on mes-
sage-passing was used. The main thread sends out
requests to worker threads, which then load terrain
data in the background while the main thread contin-
ues rendering. After loading the data into memory,
the workers send the data back to the main thread for
rendering. Terrain data which has not been rendered
in a while should be deallocated to make room for
new data. For this, a least-recently used (LRU) cache
is used to store terrain data in memory, which evicts
unused terrain data as soon as new data comes in. A
similar mechanism is used for the disk cache.

Results
The terrain rendering system performs well, yielding
over 60 FPS on a 2020 MacBook Air. The system
allows the user to browse the Earth seamlessly and its
performance settings can be configured. The source
code is published under the MIT licence. Potential
improvements and future work include supporting
multiple data providers with fallbacks and extending
the system into an SDK.

The Swiss Alps in Valais.

