
Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences - Book 2025

David Ziswiler
david.ziswiler@finecloud.ch

Creating Tomorrow’s Software Development
Environment at Swiss Post
Degree programme : MAS Information Technology

This thesis explores the feasibility of standardising development environ-
ments at Swiss Post using Dev Containers and GitHub Codespaces. The
research provides insights into improving developer productivity and
reducing costs by addressing inefficiencies in onboarding and environment
consistency.

Context and Problems
Since 2024, Swiss Post has adopted GitHub as the
primary platform for source code management (SCM)
and continuous integration/continuous deployment
(CI/CD). Developers work on managed Windows or
macOS devices, but the current local development
environments suffer from inconsistencies. This leads
to inefficiencies in onboarding new developers and
discrepancies between local and CI environments.
These issues contribute to the well-known „it works
on my machine“ problem, where builds fail in CI
despite working locally The onboarding process for
new developers is inefficient due to manual setup
procedures, which lead to inconsistencies in devel-
opment environments. Over time, tool versions
and configuration variations cause discrepancies
between local and CI/CD environments, resulting
in unexpected build failures. These challenges slow
down development, increase maintenance efforts, and
reduce overall productivity.

Objectives and Goals
The aim is to standardise and streamline the devel-
opment environment for Swiss Post‘s Java teams. To
achieve this, a Dev Containers prototype was devel-
oped, and a proof of concept (PoC) was conducted
with GitHub Codespaces. Additionally, to improve
developer flexibility, the feasibility of a bring-
your-own-device (BYOD) policy was evaluated. The
solution automates tool management, ensures version
consistency, and simplifies setup procedures. The key
objectives include reducing onboarding time for new
developers, improving consistency across develop-
ment environments, and analysing the cost-effective-
ness of various solutions.

Methods
A SWOT analysis was made to show the risks and
chances of using GitHub Codespaces. The require-
ments for the development environment were
collected through an internal survey to all Java devel-

opers, with quantitative and qualitative questions to
capture a broad range of requirements. Prototyping
and testing were used to build a prototype that fulfils
the goals. A self-experiment measured and compared
the onboarding time between the old and the new
prototype environments.

Results
The internal survey, completed by 28 Java developers,
indicated higher satisfaction among macOS users
(7.4 out of 10) than Windows users (5.2 out of 10).
Furthermore, 75% of developers would like to have
a BYOD option. 86% of Swiss Post Java developers
use the JetBrains IntelliJ IDEA IDE as their primary
IDE. GitHub Codespaces was initially considered as a
possible solution, but in January 2025, GitHub silently
removed the mention of the JetBrains IDE from the
GitHub Codespaces docs. Further internal network-
ing constraints at Swiss Post and the corporate
proxy made using GitHub Codespaces for daily work
impossible. The survey also revealed that most (56%)
Java developers are not interested in using a cloud
development environment. To ensure consistency
across environments, the prototype replaces manual
configurations (currently used by 57% of developers)
with Dev Containers. This reduces configuration drift
and ensures alignment between local development
and CI pipelines. Additionally, cost savings were
achieved by eliminating Docker Desktop licenses in
favor of a setup that uses WSL2 on Windows and Lima
on macOS, preserving compatibility with IntelliJ and
Swiss Post‘s corporate proxy. The prototype signifi-
cantly improved onboarding efficiency. The total setup
time was reduced by 55% (from 1 hour 32 minutes to
41 minutes), while the active developer interaction
required during setup was decreased by 78% (from
1 hour 19 minutes to 17 minutes). This allows develop-
ers to start productive work faster, improving overall
efficiency.

