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This bachelor thesis investigates the use of Physics-Informed Neural Net-
works (PINNs) to improve digital twins for a two-stroke marine engine. The 
objective is to combine data-driven modeling approaches with physical 
knowledge in order to achieve both high computational speed and physical 
accuracy. The focus is on the development of continuous and discrete Phy-
sics-Informed Neural Network (PINN) models for dynamical systems.

Initial situation
WinGD uses digital twins to optimize, simulate, and 
calibrate its marine engines. Classical data-driven 
neural networks offer high computational speed but 
lack physical accuracy. In contrast, simulation-based 
digital twins provide high physical accuracy but have 
limited computational efficiency. There is therefore a 
need for a hybrid approach that combines both high 
computational speed and high physical accuracy.

Objectives of the thesis
The objective of this thesis is to develop a Phys-
ics-Informed Neural Network (PINN) to improve the 
currently used simulation-based digital twin. The 
objectives are separated into three steps:
1.	– � Develop a foundational understanding of 

Physics-Informed Neural Networks (PINNs) by 
reconstructing existing methods for a continuous 
PINN applied to a homogeneous mass-spring–
damper system.

2.	– � Develop a minimum viable product of a discrete 
PINN for an inhomogeneous mass-spring–
damper system.

3.	– � Apply the discrete PINN to a WinGD-specific 
injection system.

Methodology
First, a continuous Physics-Informed Neural Network 
(PINN) for a homogeneous mass-spring–damper 
system is implemented and validated. Furthermore, 
a discrete Physics-Informed Neural Network (PINN) 
including a normalization layer for an inhomogeneous 
mass-spring-damper system is implemented, which 
autoregressively predicts the next discrete system 
state vector from the previous state vector through 
a self-loop. The training process combines one-step, 
physics, and data losses to achieve physical accuracy. 
Code extensions include a curriculum learning strat-
egy and a loss scheduler to improve performance. The 
discrete Physics-Informed Neural Network (PINN) is 
then applied to an engine injection system, where it 
is extended by a Fourier Feature Mapping Embedding. 
In this case, only the one-step and physics losses 
in the training process are used to achieve physical 
accuracy.

Results and future work
The continuous Physics-Informed Neural Network 
(PINN) demonstrates strong extrapolation and inter-
polation capabilities beyond the training data. The 
discrete PINN for an inhomogeneous mass-spring-
damper system achieves a total loss of approximately 
10-4 after 10 000 training epochs with a time step 
of 0.01 s, with the rollout loss contributing most to 
the total loss. Model validation through inference 
shows a mean squared error (MSE) of approximately 
10-6 between the predicted and synthetic ground-
truth position and velocity over a time span of 10 s. 
The discrete Physics-Informed Neural Network (PINN) 
for an engine injection system achieves a total loss of 
approximately 10-9 after 5 000 training epochs with a 
time step of 0.0001 s. A total mean squared error of 
approximately 10-19 between the predicted and syn-
thetic ground-truth position and velocity is achieved 
in the model inference validation.  Future work 
includes deploying the trained model on an industrial 
PC (IPC) and adapting it for real-time fault detection.

Discrete PINN model architecture for an engine injection 
system


